您所在位置:首页 > 选调生 > 备考资料 > 行测 >

选调生行测数量关系排列组合中“隔板模型”

2021-10-13 14:23:40 来源:中公教育选调生考试网

重庆选调生备考Q群:228371290  微信公众号:xdskaoshi  备考课程 / 备考活动

行测数量关系专项中排列组合一直是一个重要考点,同时也是数量关系中较为困难的章节。但是排列组合也有其优点,题干相对简短,计算难度不大,尤其是其中一些相对特殊的模型,只要掌握其做题思路,解答起来就会非常迅速,隔板模型类的排列组合就是这样一种非常典型的题目。

“有10个相同的苹果分给6位不同的小朋友,每人至少一个,一共有多少种不同的分法?”,这个题目就是一个非常典型的隔板模型类的题目。怎样才能够保证每个人至少分到相同的苹果呢?10个相同的苹果放在一排,去掉头尾的空格,内部一共可以形成9个空格,在这些空格中任选一个位置放一块木板隔断,就可以把苹果分为两份,放两块木板隔断就可以分为三份……,现在有六名学生,相当于要分为六份,那就只需在9个空格中任选5个位置放入木板隔断即可,同时没有顺序要求,则总的分法就有

结合这个题目一起总结一下:

(1)隔板模型本质

相同元素的不同分堆

(2)隔板模型公式

把n个相同元素分给m个不同的对象,每个对象至少一个元素,共有

中不同的分法。

(3)隔板模型条件

要想运用隔板模型来进行解题,题目需要满足三个条件:

1.所要分的元素必须完全相同

2.所要分的元素必须分完,绝不允许有剩余

3.每个对象至少分到1个,决不允许出现分不到元素的对象

例1有8个相同的篮球,分给6个不同的班级,每个班至少一个,有多少种不同的分配方案?

A.12 B.21 C.42 D.52

【答案】B。中公解析:这道问题满足隔板模型的所有前提条件,直接套用公式

种。

例2有18个相同的篮球,分给5个不同的班级,每个班至少3个,有多少种不同的分配方案?

A.25 B.35 C70 D.80

【答案】B。中公解析:这个题有一处不满足隔板模型,“每个班至少3”,可以先每个班分2个,共分出去10个球,此时还剩8个球分5个班,每个班至少分一个,这样就满足模型要求了,

种。

重庆选调考试信息欢迎关注重庆选调生考试频道
 

或关注重庆选调生考试微信号(xdskaoshi),及时掌握考试资讯!
 

注:本站稿件未经许可不得转载,转载请保留出处及源文件地址。

热门推荐
2022中央遴选公务员笔试简章 2022重庆统招选调生笔试课程 选调三年试题两年模拟助力0元领 2021重庆选调新春打卡营
公告预约
省份 *
姓名 *
电话 *
QQ
微信
备考平台
考前热搜

中公简介 | 中公荣誉 | 社会责任 | 媒体聚焦 | 联系我们 | 版权声明 | 支付方式 | 友情链接 | 网站导航 | 加入我们
Copyright©1999- 北京中公教育科技有限公司 .All Rights Reserved
全国统一报名专线:400-6300-999 网校报名:400-900-8885 图书订购:400-6509-705
京ICP备10218183号-83 京ICP证161188号 京公网安备 11010802029763号 出版物经营许可证新出发京批字第直130052号